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Noise distributions in retrieval dynamics of the Hopfield 
model 

Tomoko Ozek and Hidetoshi Nishimori 
Depamnent of physics, Tokyo Institute of Technology, Oh-okayma, Meguro, Tokyo 152, Japan 

Received 14 June 1994 

Abstract We examine the dynamical theory, recently proposed by Coolen and Shenington, 
which describes the deterministic Bow of order parameters in the memory retrieval processes 
of the Hopfield model. We have performed Monte Carlo simulations to investigate the limit of 
applicability of their theory. We have found that the qualitative behaviour of retrieval processes 
follows their prediction fairly well. However, the theory fails to describe the noise distribution 
quantitatively when the effects of non-retrieved pailems are no1 neglibble. 

Many attempts [ 1-91 have been made to describe the dynamics of retrieval processes in the 
Hopfield model. Great interest lies in such non-trivial behaviour as the sensitivity to initial 
conditions and the sizes and shapes of the basins of attraction. These properties cannot be 
determined without a direct treatment of the dynamical process. Despite its necessity, there 
is, as yet, no such exact dynamical theory available. As Gardner eta1 141 suggested, the num- 
ber of order parameters representing the network state increases very quickly with the time- 
steps and this makes it very difficult to handle the dynamical processes rigorously. Amari 
and Maginu [5] employed a signal-to-noise ratio analysis and tried to describe the dynamical 
processes approximately in terms of a few macrovariables, Although their theory is simple 
and a good approximation for successful retrieval processes, analysis in our previous paper 
[3] clearly showed that their assumption that the distribution of the noise term in the local 
field is Gaussian is not satisfied when rehieval fails. The noise distribution is non-Gaussian 
from an early stage of the memory retrieval process which leads the networks to a spin-glass 
(non-retrieval) state. Therefore an exact treatment of the noise distribution was required 
to describe the dynamical processes correctly when the retrieval process is not successful. 
Coolen and Sherington [ 1,2] (cs hereafter) recently proposed a dynamical theory to describe 
the retrieval processes analytically. They employed a replica calculation of the distribution 
of the noise term under certain assumptions on the microscopic behaviour of the system. The 
purpose of the present paper is to show the results of extensive numerical simulations which 
examine the l i t  of applicability of their theory. We have found that the predicted noise 
distribution agrees fairly well qualitatively with simulation results. Thus this theory is a step 
forward from the Amari-Maginu theory [5] which employs a simple Gaussian form of the 
noise distribution. However, in quantitative terms, deviations have been observed between 
the theory and simulations even in the region where cs conjectured the theory to be exact. 

We consider the memory retrieval process of the Hopfield model. The Hopfield model 
consists of N neurons, each of which has a two-state variable si = Al.  Dynamical flow of 
the network state s is governed by an asynchronous stochastic updating rule 

W(S) = $1 - s n t ~ [ P h d s ) l I  (1) 

0305-I470/94i217061tO8$1950 @ 1994 IOP Publishing Ltd 7061 



7062 

where W k ( s )  is the transition rate of the kth spin and h k ( S )  denotes the local field to the 
kth neuron in the state s: 

T Ozeki and H Nishimori 

When we store the random patterns (p  = 1, . . . , U N )  according to the Hebb rule 

the embedded patterns become attractors of the dynamical flow of the network state under 
appropriate conditions. cs started from the microscopic equations of the Markov process, 
described by the master equation 

in which !$ is a spin-flip operator, 

Fk@(s) E @(SI,. . ., -sk3 ..., SN) 
and obtained the deterministic dynamical equations for order parameters 

Here m(s)  is the overlap of the network state with the first pattern (supposing that the 
network is in the process where the first pattern t' is retrieved) and r ( s )  represents the 
overlap of the network state with non-retrieved patterns. 

The local field can be written as 

where zi(s) is the so-called noise term in the local field. They introduced a distribution 
which measures the probability density in terms of the macroscopic order parameters (m, r )  

P,(s)G[m - m ( s ) l ~ [ r  - r ( s ) l .  

By inserting the microscopic equation, they wrote the time derivative of this macroscopic 
distribution for large N satisfying the Liouville form. Then they obtained the deterministic 
evolution of the order parameters (m, r )  

Pr(m, r )  = 
s 

Pt(m, r )  = S(m - m*(r))6(r - r* ( t ) )  

in which the deterministic trajectory (m*( t ) , r* ( t ) )  is given by the solution of the set of 
flow equations 

(4) 

( 5 )  

dm - = 1 dz Dm.,Jzl tanh[Bm + Bzl - m dt 

2 d t  U 
-_ dr = - ' 1 dz Dm., ; r [~I~ tanh[,5m + ,521 + 1 - r 
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where 

is the noise distribution in the (m,  r )  subshells. 
For simplicity of calculation of the noise distribution, cs assumed the following. 

(i) The flow equations of the order parameters (4 )  and (9, and therefore the noise 
distribution D m . r ; t [ ~ ]  (6), are self-averaging in the thermodynamic limit ( N  --f 00) 

with respect to pattern realizations {c”). 
(ii) As far as the calculation of the noise distribution is concerned, cs assumed 

equipartitioning of probability in the macroscopic (m, r )  subshells of the ensemble. 

The former allowed them to simplify the calculation of the noise distribution by averaging 
over the random pattems [e@). The latter removed the explicit time dependence coming 
from P,(s) in the noise distribution. 

These two assumptions enabled them to perform the replica calculation of the noise 
distribution (details are found in [ l ] ) .  The result under a replica-symmetric (RS) ansatz 
is 

with a set of saddle-point equations 

where A 
We have performed Monte Carlo simulations to check the limit of applicability of cs’ 

assumptions on the noise distribution mentioned above. We have simulated the retrieval 
processes in the Hopfield network of asynchronous dynamics with N = 5000, 10000 and 
30000 neurons at zero temperature. We embedded UN random patterns ( p  in the network 
according to the Hebb rule (2). The storage capacity (Y was chosen to be 0.1 and 0.2 for 
each N .  We generated initial states of the network by flipping each spin of the first pattern 
6) independently with probability p = &(I - mo). Therefore, on average, our initial states 
have a finite overlap mo with the first pattern. The initial overlap mo was set to 0.1,0.4 
and 0.8. At zero temperature (in the limit of p --f m), the transition rate ( 1 )  becomes 

(8) 

Starting from the initial state, we have examined the dynamical behaviour by selecting 
a single neuron randomly and flipping the neuron according to the hansition rate (8). 
In the retrieval process. we have numerically calculated order parameters (n. r )  and the 
distribution of the noise term zi(s) (3). We have also solved the set of saddlepoint equations 

c u p  - h2fp. The Gaussian measure is denoted by Dy = (21r-~/~e--Y‘/’dy, 

1 WAS) = T U  - s k s g n [ h d s ) l ) .  
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Figure 1. (a) lime evolution of the network in the m versus r diagram (non-successful retrieval): 
T = 0. N = 30000. a = 0.1 and ,no = 0.1 (likewise for (b)-(d)). Simulation results are plotted 
as 0 a( every iterations per neuron. The broken curve is the AT-line, above this the replica- 
symmetric solution is unstable. The full curve represents the cs prediction for the time evolution 
of the order parameters. ( 6 )  Noise distribution at r = 1 (iteration per neuron). The full C U N ~  

was obtained for the RS distribution by CS. The network is in the RS region. ( e )  As for (b). with 
noise distribution at f = 2. (d) As for (e ) ,  with noise distribution at f = 10, 

using (m, r )  obtained by simulation and calculated the replica-symmetric noise distribution 
DEsr[z]. We have compared the distribution of the noise term of simulations with that 
obtained by the cs theory Dis,[z] for the same (m. r) .  

One of the results is shown in figure 1, which represents the case N = 30000,~ = 0.1 
and mo = 0.1. Figure l(a) shows the development of the order parameters ( m , r ) .  The 
overlap m increases initially, but decreases after a while and finally retrieval fails, The initial 
overlap mo = 0.1 is too small for successful retrieval. We have also solved differential 
equations (4) and (5) numerically to compare the cs prediction for the time evolution of the 
order parameters (the full curve) with simulation results. The broken curve represents the 
replica-symmehy breaking (AT) curve 

DY / cosh'[hy + p1 0 = U - $(U + A)' 

The RS calculation of noise disfxibution does not hold beyond this line in the m-r diagram. 
The noise distributions are depicted in figures I(b>-(d). We have taken statistics of zI by 
varying i from 1 to N at each time-step (iteration per neuron) for a fixed set of random 
patterns e". The full curve is obtained by the RS calculation of the noise distribution 
DEfr[z]. In figures I(b) and (c), the network state is in the RS region. The cs theory 
describes the noise distribution qualitatively well. Compared to the Amari-Maginu theory 
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Figure 2. (a) Timedependent behaviour of m (non-successful retrieval); T = 0, (I = 0.1 and 
mo = 0.1. x .  o and. denote simulation results for N = 5000.10000 and 30000. respectively. 
Plots were obtained by averaging over 100 samples, enor bars represent standard deviations. 
and the broken curve is a guide for the eye. For N = 5000 and 10000, each data point is 
shown shined slightly in the horizontal direction to avoid overlaps. Self-averaging with respect 
to panem realization is likely to hold. The full cuwe represents the cs prediction for the time 
evolution of the order parameter. (b)  Time-dependent behaviour of r ,  obtained under the same 
condition as (a).  Self-averaging with respect to pattern realization is likely to hold, (c) Time 
evolution of the cumulants of noise distribution to fourth order, conditions as in (a), C, to 
C,  present cumulants up to foudh order Full curves denote cs' Rs calculation. There exist 
clear differences between the lhwry and simulations even when the network is in the RS region 
(1 < 2). ( d )  Time evolution of the fifth and sixth cumulants of noise disuibution; conditions a5 
in (e). (Full curves denote cs' RS calculation.) There exist differences between the theory and 
simulations even when the network is in the RS region ( t  < 2). 

[5 ]  which assumed a Gaussian distribution, the cs theory succeeds in depicting the noise 
distribution in more detail. However, deviations of simulation results from the theory are 
apparently non-negligible quantitatively. 

As shown in our previous paper [3], cumulants of the noise distribution allow us 
to discuss the theory in a quantitative fashion. We have calculated cumulants of the 
distribution to sixth order. Moreover, to check~the finite-size effect and cs' assumption of 
self-averaging property, we have investigated 100 different sets of random patterns for each 
N = 5000,10000 and 30000. The results are shown in figure 2. Simulation conditions are 
the same as in figure 1 and retrieval fails. Figures 2(n) and (b) show the time evolution of m 
and r .  The cross, open and full circles show the simulation results for N = 5000, 10000 and 
30000, respectively. As cs suggested, the simulation results back up their assumption of the 
self-averaging property. As the network size increases, fluctuations decrease and for large 



7066 T Ozeki and H Nishinwri 

12 

10 

8 

r 6  

4 

2 

0 

-Simulation I,;;;,.; . . . . . -. 
0 0.2 0.4 0.6 0.8 1 

m 

a P.0  I 
0.01 , 

-0.005t * +  v + j  
-0.01 

* +  
* . * . I  

* +  
-0.015 

0 1 2 3 4 5 6  
1 

Figure 3. ( a )  Timedependent behaviour of m. I (successful retrieval); T = 0.u = 0.1, N = 
30000 and mg = 0.4 gust above the critical value for successful retrieval), Only one example 
was tried in this case. Nolice t h l  I increases nl an early shge md then decreases 10 1. The 
full c w e  represents the cs prediction for the time evolution of the order panunelen. (b) Time 
evolution of cumulants of noise disVibution 10 fourth order; conditions as in (a),  CIi denotes 
the first cumulanl of the theoretical noise distribution and CIS the simulation IeSulL Deviation of 
the theory from simulation develops at the first stage but gradually vanishes. ( c )  Time evolution 
of the fifth and sixlh cumulants of noise distribution: conditions as in (a). Deviation of lheory 
from simulation develops at the first stage but gradually vanishes. 

N the trajectories of m and r do not depend on the pattern realization. In figures 2(c) and 
(d )  we compare the cumulants of the noise distribution obtained by the replica calculation 
D ~ ~ , [ z ]  with numerical simulations ( N  = 5000, 10000 and 30000). It is noticed that there 
exist clear differences between the theory and simulations. Even when the network is in 
the RS region where CS conjectured exactness of their theory (I < 2 iteration per neuron in 
figure), the theory does not describe the noise distribution in a quantitative sense. As for the 
first and third cumulants CI and C,. although it is difficult to notice the difference from the 
figure, there actually exist more than 30% differences between the theory and simulations. 
The same behaviour was obtained in the case of IY = 0.2 and mo = 0.1 where retrieval 
fails. These results lead us to the conclusion that the cs theory is not exact when retrieval 
fails, although it is a fairly good approximation, as seen in figures I(bHd). 

Anothet case is shown in figure 3 ( N  = 30000, (I = 0.1 and mo = 0.4). In this case the 
initial overlap mo is very close to, but just above, the critical value for successful retrieval. 
Although the effect of non-retrieval patterns r increases at an early stage, the first pattern 
defeats other pattems and finally retrieval succeeds. An interesting behaviour can be seen 
in figures 3(b) and (c). When r increases, the difference between theoretical and simulation 
noise distributions increases. However, the theory becomes very close to the simulation 
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Figure 4. (a )  Time-dependent behaviour of m, I (non-successful retrievd); T 7 0. (I = 
0.2, N = 30000 and mo = 0.8. Only one example was Vied. Although mo is high, retrieval 
fails because (I = 0.2 is large. The full curve represents the cs prediction for the time evolution 
of the order parameters. (b)  Time evolution of cumulants of noise distribution to founh order, 
conditions as in (a). When r is close Io I, the theory slays very close to the simulations, 
although diverges from the simulations as soon as I becomes larger. (c )  Time evolution of the 
fifth and sixth cumulants of noise distribution; conditions as in (a).  When r is close to 1. the 
theory stays very close to simulations, but diverges as soon as r becomes larger. 

when r becomes smaller later. Because the network stays in the RS region, we cannot 
explain the deviation in the early stage by ascribing it to replica-symmetry breaking. 

We also tried the case of mo = 0.8 with CI = 0.1. The overlap m develops towards 1, 
whereas r does not increase nor decrease and stays in the very close vicinity of the initial 
state r = 1. As all the cumulants, except the second, stay zero in the time development, we 
omitted the figure. But the theory described the simulation well with a discrepancy of less 
than 1%. The same behaviour has been observed at finite temperatures where the dynamics 
are governed by the transition rate (1). - &om the above results, we conclude that the theory describes the noise distribution 
quite faithfully only when the effect of other patterns is small (or r is close to 1). Figure 4 
supports this conclusion. Although mo is high, retrieval fails because CI = 0.2 is large 
(overloading) in this case. When r is small, the theory stays very close to simulations. 
However, the theory starts to go away from simulations when r increases. As the network 
evolves towards equilibrium states in figures 2 and 4, the difference between the theory 
and simulation increases. We conclude that such a phenomenon does not result from the 
fact that the network state goes into the RSB region but comes from some other reasons. 
Firstly, although equipartitioning of probability of the network states in the subshells of m 
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and r is correct in equilibrium, it is not readily acceptable in dynamical, non-equilibrium 
processes. Moreover, there must be some limits in the idea that the network state can be 
described only in terms of two parameters m and r ,  especially when the shape of distribution 
becomes complicated in non-retrieval cases. According to the theory of a, once CL, m and 
r are given, the noise distribution is determined independently of other conditions such as 
the temperature and history through which the network passed during time development. 
We need more than two parameters to describe the dynamical processes quantitatively when 
retrieval fails, as  suggested by Gardner et al 141. 

As our simulation clearly showed, the theory of Cs is a fairly good approximation for 
qualitative aspects of memory retrieval, although there definitely exist quantitative deviations 
from simulation results. Their method may be applicable to many situations beyond the 
scope of equilibrium statistical mechanics because cs did not actually use the specific form 
of the interaction (2)  in their derivation of the noise distribution. 

T Ozeki and H Nishimori 
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